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Boundary Integral Solutions of the Heat Equation 

By E. A. McIntyre, Jr.* 

Abstract. The Boundary Integral Method (BIM) has recently become quite popular because of 
its ability to provide cheap numerical solutions to the Laplace equation. This paper describes 
an attempt to apply a similar approach to the (time-dependent) heat equation in two space 
variables. 

1. Introduction. In its simplest form, the BIM uses the prescribed initial and 
boundary data, together with the (known) fundamental solution of a given differen- 
tial equation defined on some domain Q, to construct a second integral equation 
which is itself to be solved on the boundary of Ui. In our case, the integral equation 
solution is a layered thermal potential, i.e., it represents a continuous distribution of 
sources and sinks along the boundary of the two-dimensional domain U. One then 
obtains the solution to the given problem by integrating the product of the layered 
thermal potential and a known kernel over the boundary, hence the terminology 
boundary integral. 

The advantage of such an approach is that the heart of the computation, viz. the 
solution of the integral equation, is performed on the boundary, thus reducing the 
problem from two space dimensions to one. Furthermore, the resulting domain in 
one space and time will be rectangular, a computational convenience, even though 
the given domain i2 may have been quite irregular (see Example 5 in the Appendix). 
Of course, as a result of these simplifications, we may expect substantial savings in 
computer time and storage. 

The work outlined below is based on the use of single layered thermal potentials, 
and requires that the domain have a smooth boundary and, with some restrictions, 
either a Neumann or mixed boundary condition. The equation itself must be 
homogeneous, but we do allow inhomogeneous initial data. Though not shown here, 
it seems to be well within the capabilities of this approach to handle boundaries 
involving an arbitrary mixture of piecewise C2 curves, with Dirichlet, Neumann, 
and/or mixed boundary data. 

Of course, the tradeoff is that to evaluate the solution, we must do a double 
integral for each point at which we want to know the solution. If needed at a large 
number of points, the cost of generating the solution dominates, and the method 
becomes impractical. In many applications however, in particular in semiconductor 
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fabrication, one only needs to know the solution at one, or perhaps a few points, late 
in time. In such instances, we might expect this technique to be of some value. 

As far as the author knows, this is the second time the theory has been 
implemented directly (see [3]), though N. Ghosh (see [9]) has presented a slightly 
different formulation of the basic problem and there has been some work on 
methods employing a Laplace transform in time (see [15]). This work is an out- 
growth of that of J. Blue on boundary integral solutions of the Laplace equation (see 
[2]). I would like also to acknowledge many very useful discussions with L. 
Kaufman, J. McKenna, and N. Shryer. 

2. The Mathematical Problem. Let Q be an open bounded set in the plane whose 
boundary U2 is a simple closed curve in C2, i.e., 

aQ {= ()s10 < s < L} 

where s is arclength, i(s) E C2[0,L] and W(s1) = W(s2) implies s" = s2 with the 
exception that E(O) = {(L). Further, we assume /3(s, t), g(s, t) E C(S), where 

S = aQ x(O,T), 

T < oc (see Diagram 2.1). Problem: Find u(x, t) such that 

(2.1) (i) Lu=ut-Au=O on Q x(O,T), 

(2.2) (ii) au + 13(s, t)u(s, t) = g(s, t) on S, 

where au/av = Vu vi v being the inward normal to ai at c(s), and 

(iii) u (x, 0) =f(x) on Q 

t 

{X1 ~ ~ ~ ~~~X 

DIAGRAM 2.1 

Indeed, this is the familiar heat equation in two space variables, though, for 
reasons made apparent later, we have presented it under slightly more restrictive 
continuity assumptions than those necessary to ensure that the problem be well-posed. 

A common approach to the theory of this equation involves the use of its 
fundamental solution to construct layered thermal potentials (see [8], [12], and [14]). 
We proceed in that fashion. 
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For now, assume f(x) 0. Let P(x, t; y, T) be the fundamental solution of the 
heat equation, i.e., for x, y E -, 

( e-lx-Y112 /4(t-T) 

(X, t; Y, ) = ( nt t > X) 

t 0 otherwise, 

where stands for the Euclidean norm. It can be shown (see [8]) that 

(2.3) U(x, t) = f f F(x, t; c(s), T)r(s, T) ds dTr, 

the single layered thermal potential with density 4, satisfies (2.1)-(2.2) whenever k 
satisfies 

(2.4) 1(P s, t) = Ola av W(), t; 0(0) T) 

+ /(s, t)F(k(s), t; E(a), T) ( 'r, T) da dT 

-g(s, t), 
a result which derives from the jump condition 

(2.5) lim aa~ -2 t)au 1 au (s), ) 
X-V~s) av 2 aP 

(x O) 

where 

au (X, t) = au (x, t), axu (X, t)) 

Here, of course, U(x, 0) 0. 
Our plan then is to solve (2.4) for A, the solution U being recoverable by the 

double integral in (2.3). Observe that, as mentioned in the preface, 4 is defined on a 
rectangle in s and t, which means that our problem has been reduced from two 
space dimensions to one. 

It is of course also a feature of this method that we can solve the exterior problem 
too, i.e., given prescribed boundary data we can use (2.3) to solve for values of U 
outside the region Q (see [14]) by a change of sign in (2.5). More precisely, since U is 
itself continuous up to the boundary, we can rewrite (2.4) as 

au+ _ j(s5t) au* 
(2.6) av 2 + wv 

for the interior problem, where alu/av represents the limit function for x E S2 and 

aU*/lv the first term of the double integral in (2.4), which itself derives from the 
formal differentiation of (2.3). Everything carries over for the exterior problem 
except that (2.6) becomes 

au- -+ (s, t) au* 
al, 2 dv' 

where now au-/,8v represents the limit for values of x outside of Q. For our 
purposes, we need only consider the interior problem. 

Consider now the case of inhomogeneous initial data, i.e., f(x) is not identically 
zero. 
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It can be shown that the function 

e- ix - y112/4t 

v(x, t) e 4Tt f (y) dy 

satisfies Lv = 0 and lim v(x, t) = f (x). Thus we may hope to solve the complete 

problem by using v and the superposition of solutions to construct a modified 
problem for U. It follows then, that if u = v + U, where U is some as yet 
undetermined thermal potential, we have 

Lu =O and lim u (x,t )= f(x) . 

Since we want a u/8v + / u = g, and we already know v (x, t) explicitly, we will have 
solved the complete problem if we can find U satisfying 

(2.7) au + U = g _ av- _v v. 

Thus, we have reduced the inhomogeneous initial data problem to a homogeneous 
one, and may proceed as before. 

As a technical detail, we note that, on the boundary, 

av(S t) af f (S) -(s t)- -+ 
It(s Iv'- 

as t -O + , i.e., for f 0 0 on aQ, we have a square root singularity in 4 near t = 0. 
To remove this problem, we institute a change of variables, i.e., we introduce a new 
variable of integration q 

2= X, and instead of t, use X = Vt (we apologize for the 
ambiguous reappearance of T), by means of which we may define the new functions 

'(S, T) T '(S, T2) = xf/ti(s, t), 

a(s, a)= 4u) - OS)) * 
P 

b(S, Tr) = 13(s, T2) 

k(s, T) = -2Tg(s, T2), 

and rewrite (2.4) as 

g(S, T)= k(s, T) + 2X1 j e-jL(S)_ (Y)112/4(T2-q2) 

(2.8) 
[a(S, 5) + b( 

) 
T]) (.7) dad q. 

This is the equation we want to solve. It is a Volterra integral equation of the 
second kind. 

As a last consideration before turning our attention to numerical matters, we 
point out that the above equation has a weakly singular kernel, so that the 
integration in 'q must take into account a square root singularity at the upper 
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endpoint. More precisely, we make the following claim: 

lim 'T2 _- '2 jL e - (s)-a)II2/4(T2 2) [ (I)2 + I 5 ) Oaq) da 

(2.9) : { 1 2I5(5,T2)}t(sT). 

Proof of (2.9). Clearly, for 1II(s) - k(a)II bounded away from zero, the exponen- 
tial decreases rapidly as 'q --. - , dominating all other terms, and thus making no 
contribution to the desired limit. It follows then, that we need only examine effects 
for a near s, toward which end we consider 

C8 =IT 2 _ n2~ | e_ -14(S) _4(U) 112 /4(T 2_n2) 

(2.10) [(s2 ) + br2 ](?,l) da, 

where 8 is a small positive constant. 
If, however, we are willing to assume that i(s) has continuous second derivatives 

and Taylor approximation 

(2.11) {(a) = (S) + (s)(a - S) + 2(! ) (a _ s)2 + O(a -5) 

we can write 

114(S) - {(a) 112 = 11,'(S) 112(a - S)2 + O(a - S) 
and also 

a(s, a) = [k'(s)(a - s) + t"!) (a _ S)2 + O(a _ S)3j * 

which leads to 

a(s, a) = 8 PS )*v(a _ S)2 + O(a _ - 

since k'(s) . 0. Observe that it was in order to satisfy (2.11) that we chose to 
include a more restrictive continuity assumption in the original statement of the 
problem. 

Substituting these expressions in (2.10) and making the change of variable 
a = (s-u)/ VT2- ,2 ,wehave 

C8 = | [bre + ( ( _X ))+ (a~.2 ;)()3 ]/;)T 12a, 

-a Vt(s) -~ + b(S, T) + O ~ , as - a T2 _ 2 , q da, 
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and hence that 

irn C = f e- lC /4 [ (s) + b(S, T) dao D(S, T) 
q 

- T 8v PS 

4v& T~'( S ) {1 , 2 (s) i + 2Ai(s, T )(s, T). 

The desired result follows from the fact that we get the same limit fora e [s, s + 6]. 
We turn now to numerical considerations, though we must continue to bear in 

mind the existence of this singularity, and will, in addition, use the dependence on 

i(s), and /3(s, t) shown above to determine its contribution. 

3. The Numerical Method. In this section, we use Galerkin's method, based on a 
B-spline discretization along the boundary, to recast (2.8) as a Volterra integral 
equation of the second kind for the time-dependent vector of coefficients. We then 
present a quadrature method to solve that equation, taking into account the 
particular form of the singularity, and make some comments about stability. 

Let us rewrite (2.8) as 

(3.1) t(S,) = k(s,) + 2Tf L I(s, r; a,do)(,) drj. 

Assuming some regular B-spline mesh (see [16]) in s, the splines being of order k, 
we can approximate t by a method of lines type expansion 

N 

(3.2) g(S, T) ~ Ej(T)Bj(s) = Z(T) . B(s), 
i=1 

where the tj(T) are the time-dependent coefficients, and Z and B the corresponding 
N-dimensional vectors. Substituting in (3.1) and using the Galerkin criteria, we get 
that 

N 

Eg(T)L B,(s)B,(s) ds 

= jL k(s, T)Bj(s) ds 

T L L N 

+2TJ J JI(SrT;a,'r)) tj (',q)Bi(a)B1(s) da ds dr, 
0 0 0 ,=1 

j = 1, 2,..., N, or, more compactly, 

To B - Z(T) = K(Tr) + 2Tr A(Tr,qi) - Z(q) drj, 

where 

B= [| Bi(s)Bj(s) ds], K(T)= j k(s,)B(s) ds, 

and 

A(,rq)= jL j I(sT;aul)Bi(a)Bj(s) dads 
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We note in passing that, because of the support properties of B-splines, B will be an 
invertible matrix of bandwidth 2k - 1, from which it follows that 

(3.3) Z(T) = B-1K(T) + 2TB _1 A( T,)Z( q) dq, 

i.e., we have a linear Volterra integral equation of the second kind for the vector 

Z(T). 
One class of methods for dealing with such problems are called quadrature 

methods (see [1]) which we motivate below. 
Suppose we want to solve 

(3.4) f (t) = g(t) + X| K(t. s)f (s) ds, t E [0, T], 

where f is a scalar function and X is some known negative constant. This condition 
on X is necessary to ensure that we have a stable equation. Hereafter, when we use 
the notion of stability, it will be in reference to some particular numerical scheme, 
since it can be shown that (3.3) is indeed a stable equation. 

One more or less straightforward approach to the solution of (3.4) is that of 
numerical quadrature, i.e., we set up some equally-spaced mesh 0 = so < s, < 52 < 

* < Sn = T. and approximate the integral in (3.4) by a discrete sum, so that 

(3.5) f = gi + X wKijfj, 
j=O 

for i = 0, 1,. .. n, where f1 = f(s), gi = g(s1), Kij = K(si, sj), and the wi are some 
suitably chosen quadrature weights. Thus, at each step, we will have a linear 
equation for fi in terms of the previously determined f;, and we can solve 
step-by-step through the mesh. 

It happens, however, that there are many ways to choose the wi, and that some of 
these choices, while quite acceptable for simple quadrature, lead to serious error 
accumulation when employed in a scheme such as (3.5) (see [1] and [13] for a general 
discussion). An algorithm which seems to avoid such pitfalls is one based on the 
repeated Simpson's rule and trapezoidal rule. 

In that scheme, we use weights based on a (three-point) repeated Simpson's rule 
whenever we have an odd number of points, i.e., when i is even, and the same rule 
augmented by a (two-point) trapezoidal rule over the rightmost interval when the 
number of points is odd (see Diagram 3.1). 

This scheme has been shown to be convergent and stable, even though it is 
unstable when the trapezoidal rule is applied on the left (see [10] and [13]). 

Motivated by these results, we also use a repeated three-point rule with appended- 
on-the-right two-point rule to solve (3.3). The difference here is that the weights for 
the rightmost rule, whether it be for two or three points, will always be chosen to 
integrate a square root singularity. More precisely, our situation will be as in Diagram 
3.2, where the Sij, unlike the other weights, vary with position, and satisfy 

(3.6) j f(s) ds S21f(a) + S22f (T), 
al r2 -s2 
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Weights for repeated Simpson and trapezoidal rule 

h h 
2 2 
h 4h h 
3' 37 ' 3' 

h 4h h h h 
3 3' 3 2' 2' 
h 4h 2h 4h h 
3' 3 ' 3 ' 3 ' 3' 
h 4h 2h 4h h h h 
3' 3' 3' 3' 3 2' 2' 

etc. 

h = [s, - ] 

DIAGRAM 3.1 

Weights for repeated three-point and two-point 
rules, with singularity 

S21, S22I 

S31, S32, S33, 

h 4h h 
- -,3+ s21, s22, 3 3' 3 

h 4h h 
+ S31, S32. S33 

3 3' 3 
h 4h 2h 4h h 
3 3 3_ 3+521< S22' 

etc. 

h = [s - s,- ] 

DIAGRAM 3.2 

and 

(3.7) j f() d S31f(a) +S32f( ) S33f r). 
S2 

Our particular means of achieving (3.6)-(3.7) is the standard one, viz. that the 
weights be chosen so that the results are exact for polynomial functions f up to first 
or second degree, respectively. 

Of course, any choice of algorithm raises a number of theoretical issues, only a 
few of which we choose to address here. The few technical comments below are 
somewhat theoretical in nature, the material presented being in the spirit of Baker's 
treatment of the stability theory for Volterra equations of the second kind. Readers 
not interested in these issues may go directly to the examples, which can be found in 
an appendix in the supplements section of this issue. 

Firstly, we note that the consistency of our scheme, for a large class of Z(71), 
follows directly from (2.9) and the error estimates for Newton-Cotes quadrature 
rules. Stability, on the other hand, generally requires a more complicated investiga- 
tion, which to some extent explains why there remains more than one definition of it 
extant in the literature. 
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Clearly, we can expect stability in the sense of Noble, i.e., we will not have the 
catastrophic growth of spurious solutions introduced by the discretization since, in 
keeping with his analysis, we have a repetition factor of one (see [10] and [13]). On 
the other hand, we do not necessarily expect that the absolute error will remain 
bounded-in-norm, since that condition can be shown not to hold for a simpler 
version of (3.4), viz. the special case K(t, s) 1 (see [1]). Nevertheless, one can 
prove block stability for small enough h, which leads to the conjecture that our 
scheme will have at most linear error growth, a situation we can indeed live with. 
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